131 research outputs found

    The Importance of Hand Motions for Communication and Interaction in Virtual Reality

    Get PDF
    Virtual reality (VR) is a growing method of communication and play. Recent advances have enabled hand-tracking technologies for consumer VR headsets, allowing virtual hands to mimic a user\u27s real hand movements in real-time. A growing number of users now utilize hand-tracking when using VR to manipulate objects or to create gestures when interacting with others. As VR grows as a tool and communication platform, it is important to understand how the rising prevalence of hand-tracking technology might affect users\u27 experiences. The goal of this dissertation is to investigate, through a series of experiments, how using hand motions in VR influences our experience when we communicate with others or interact with the environment. In our daily lives hand motions play a major role in interpersonal communication. Our hands can help emphasize or clarify our speech, or even supplement words entirely. When interacting with the world, hands are our primary tool for manipulating objects and performing dexterous tasks. Bringing these capabilities into VR, a space that has so far been lacking in such detailed expression and interaction, may have unexpected effects. Overall, we show that using hand-tracking and hand motions in VR is beneficial to many metrics that are used to measure the quality of experiences in virtual environments. When using accurate hand motions, people feel more comfortable and embodied within their virtual avatars, or they feel more socially present. We recommend tracking and displaying hand motions in virtual environments if embodiment or communication are the most important criteria

    Compound-Specific δ^(34)S Analysis of Volatile Organics by Coupled GC/Multicollector-ICPMS

    Get PDF
    We have developed a highly sensitive and robust method for the analysis of δ^(34)S in individual organic compounds by coupled gas chromatography (GC) and multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). The system requires minimal alteration of commercial hardware and is amenable to virtually all sample introduction methods. Isobaric interference from O_2^+ is minimized by employing dry plasma conditions and is cleanly resolved at all masses using medium resolution on the Thermo Neptune MC-ICPMS. Correction for mass bias is accomplished using standard−sample bracketing with peaks of SF6 reference gas. The precision of measured δ^(34)S values approaches 0.1‰ for analytes containing >40 pmol S and is better than 0.5‰ for those containing as little as 6 pmol S. This is within a factor of 2 of theoretical shot-noise limits. External accuracy is better than 0.3‰. Integrating only the center of chromatographic peaks, rather than the entire peak, offers significant gain in precision and chromatographic resolution with minimal effect on accuracy but requires further study for verification as a routine method. Coelution of organic compounds that do not contain S can cause degraded analytical precision. Analyses of crude oil samples show wide variability in δ^(34)S and demonstrate the robustness and precision of the method in complex environmental samples

    Water Distribution Systems in Latin America

    Get PDF
    Very few people in Latin America have constant access to an adequate water supply. To address this crisis, our project - sponsored by the AVINA Foundation - was to provide construction guides for water distribution systems that the local communities can implement to ensure sufficient water supply for the town. We contacted experts and conducted extensive research into different components of water distribution systems in an effort to understand the elements of the needed construction guides. We also created a simple questionnaire to help design customized construction guides for an appropriate water distribution system for each area so that, in the future, this project can affect all regions in need, regardless of geographical diversity. The basic construction guides and questionnaire have been sent to Paula Burt, Program Coordinator at the AVINA Foundation. Improved water distribution systems would cause many social benefits such as an enhanced quality of living, fewer health issues, and the security of a critical resource. Since local residents will be construction these systems themselves, there will be a stronger sense of self-sufficiency as they will be able to perform maintenance and build more systems on their own.https://digitalcommons.wpi.edu/gps-posters/1329/thumbnail.jp

    Precise determination of equilibrium sulfur isotope effects during volatilization and deprotonation of dissolved H_2S

    Get PDF
    Sulfide (H_2S, HS^−, and S^(2−)) is ubiquitous in marine porewaters as a result of microbial sulfate reduction, constituting the reductive end of the biogeochemical sulfur cycle. Stable isotopes have been widely used to constrain the sulfur cycle, because the redox transformations of sulfur compounds, such as microbial sulfate reduction, often exhibit sizable kinetic isotope effects. In contrast to sulfate ion (SO_4^(2−)), the most abundant form of dissolved sulfur in seawater, H2S is volatile and also deprotonated at near neutral pH. Equilibrium isotope partitioning between sulfide species can therefore overlap with kinetic isotope effects during reactions involving sulfide as either reactant or intermediate. Previous experimental attempts to measure equilibrium fractionation between H_2S and HS− have reached differing results, likely due to solutions of widely varying ionic strength. In this study, we measured the sulfur isotope fractionation between total dissolved sulfide and gaseous H2S at 20.6 ± 0.5 °C over the pH range from 2 to 8, and calculated the equilibrium isotope effects associated with deprotonation of dissolved H_2S. By using dilute solutions of Na2S, made possible by the improved sensitivity of mass spectrometric techniques, uncertainty in the first dissociation constant of H2S due to ionic strength could be better controlled. This in turn allowed us to close sulfur isotope mass balance for our experiments and increase the accuracy of the estimated fractionation factor. At equilibrium, aqueous H2S was enriched in ^(34)S by 0.7‰ and 3.1‰ relative to gaseous H_2S and aqueous HS−, respectively. The estimated fractionation between aqueous H_2S and HS^− lies between two earlier experimental reports, but agrees within the uncertainty of the measurements with a recent theoretical calculation

    Sedimentary pyrite δ^(34)S differs from porewater sulfide in Santa Barbara Basin: proposed role of organic sulfur

    Get PDF
    Santa Barbara Basin sediments host a complex network of abiotic and metabolic chemical reactions that knit together the carbon, sulfur, and iron cycles. From a 2.1-m sediment core collected in the center of the basin, we present high-resolution profiles of the concentrations and isotopic compositions of all the major species in this system: sulfate, sulfide (∑H_2S), elemental sulfur (S^0), pyrite, extractable organic sulfur (OS), proto-kerogen S, total organic and dissolved inorganic carbon, and total and reducible iron. Below 10 cm depth, the core is characterized by low apparent sulfate reduction rates (<0.01 mM/yr) except near the sulfate-methane transition zone. Surprisingly, pyrite forming in shallow sediments is ∼30‰ more ^(34)S-depleted than coexisting ∑H_2S in porewater. S^0 has the same strongly ^(34)S-depleted composition as pyrite where it forms near the sediment–water interface, though not at depth. This pattern is not easily explained by conventional hypotheses in which sedimentary pyrite derives from abiotic reactions with porewater ∑H_2S or from the products of S^0 disproportionation. Instead, we propose that pyrite formation in this environment occurs within sulfate reducing microbial aggregates or biofilms, where it reflects the isotopic composition of the immediate products of bacterial sulfate reduction. Porewater ∑H_2S in Santa Barbara Basin may be more ^(34)S-enriched than pyrite due to equilibration with relatively ^(34)S-enriched OS. The difference between OS and pyrite δ^(34)S values would then reflect the balance between microbial sulfide formation and the abundance of exchangeable OS. Both OS and pyrite δ34S records thus have the potential to provide valuable information about biogeochemical cycles and redox structure in sedimentary paleoenvironments

    Evaluating Grasping Visualizations and Control Modes in a VR Game

    Get PDF
    A primary goal of the Virtual Reality(VR) community is to build fully immersive and presence-inducing environments with seamless and natural interactions. To reach this goal, researchers are investigating how to best directly use our hands to interact with a virtual environment using hand tracking. Most studies in this field require participants to perform repetitive tasks. In this article, we investigate if results of such studies translate into a real application and game-like experience. We designed a virtual escape room in which participants interact with various objects to gather clues and complete puzzles. In a between-subjects study, we examine the effects of two input modalities (controllers vs. hand tracking) and two grasping visualizations (continuously tracked hands vs. virtual hands that disappear when grasping) on ownership, realism, efficiency, enjoyment, and presence. Our results show that ownership, realism, enjoyment, and presence increased when using hand tracking compared to controllers. Visualizing the tracked hands during grasps leads to higher ratings in one of our ownership questions and one of our enjoyment questions compared to having the virtual hands disappear during grasps as is common in many applications. We also confirm some of the main results of two studies that have a repetitive design in a more realistic gaming scenario that might be closer to a typical user experience

    Quantification and isotopic analysis of intracellular sulfur metabolites in the dissimilatory sulfate reduction pathway

    Get PDF
    Microbial sulfate reduction exhibits a normal isotope effect, leaving unreacted sulfate enriched in ^(34)S and producing sulfide that is depleted in ^(34)S. However, the magnitude of sulfur isotope fractionation is quite variable. The resulting changes in sulfur isotope abundance have been used to trace microbial sulfate reduction in modern and ancient ecosystems, but the intracellular mechanism(s) underlying the wide range of fractionations remains unclear. Here we report the concentrations and isotopic ratios of sulfur metabolites in the dissimilatory sulfate reduction pathway of Desulfovibrio alaskensis. Intracellular sulfate and APS levels change depending on the growth phase, peaking at the end of exponential phase, while sulfite accumulates in the cell during stationary phase. During exponential growth, intracellular sulfate and APS are strongly enriched in ^(34)S. The fractionation between internal and external sulfate is up to 49‰, while at the same time that between external sulfate and sulfide is just a few permil. We interpret this pattern to indicate that enzymatic fractionations remain large but the net fractionation between sulfate and sulfide is muted by the closed-system limitation of intracellular sulfate. This ‘reservoir effect’ diminishes upon cessation of exponential phase growth, allowing the expression of larger net sulfur isotope fractionations. Thus, the relative rates of sulfate exchange across the membrane versus intracellular sulfate reduction should govern the overall (net) fractionation that is expressed. A strong reservoir effect due to vigorous sulfate reduction might be responsible for the well-established inverse correlation between sulfur isotope fractionation and the cell-specific rate of sulfate reduction, while at the same time intraspecies differences in sulfate uptake and/or exchange rates could account for the significant scatter in this relationship. Our approach, together with ongoing investigations of the kinetic isotope fractionation by key enzymes in the sulfate reduction pathway, should provide an empirical basis for a quantitative model relating the magnitude of microbial isotope fractionation to their environmental and physiological controls

    Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements

    Get PDF
    The Sr/Ca ratio of coral aragonite is used to reconstruct past sea surface temperature (SST). Twenty-one laboratories took part in an interlaboratory study of coral Sr/Ca measurements. Results show interlaboratory bias can be significant, and in the extreme case could result in a range in SST estimates of 7°C. However, most of the data fall within a narrower range and the Porites coral reference material JCp-1 is now characterized well enough to have a certified Sr/Ca value of 8.838 mmol/mol with an expanded uncertainty of 0.089 mmol/mol following International Association of Geoanalysts (IAG) guidelines. This uncertainty, at the 95% confidence level, equates to 1.5°C for SST estimates using Porites, so is approaching fitness for purpose. The comparable median within laboratory error is <0.5°C. This difference in uncertainties illustrates the interlaboratory bias component that should be reduced through the use of reference materials like the JCp-1. There are many potential sources contributing to biases in comparative methods but traces of Sr in Ca standards and uncertainties in reference solution composition can account for half of the combined uncertainty. Consensus values that fulfil the requirements to be certified values were also obtained for Mg/Ca in JCp-1 and for Sr/Ca and Mg/Ca ratios in the JCt-1 giant clam reference material. Reference values with variable fitness for purpose have also been obtained for Li/Ca, B/Ca, Ba/Ca, and U/Ca in both reference materials. In future, studies reporting coral element/Ca data should also report the average value obtained for a reference material such as the JCp-1
    • …
    corecore